

NORTH DAKOTA OFFICE OF ATTORNEY GENERAL CRIME LABORATORY DIVISION

INTOXILYZER® 8000 CALIBRATION ADJUSTMENT

Intoxilyzer® 8000 Serial Number: 80-00 7080 Calibration Adjustment Location: TOXL

A. Pre-Adjustment

Replaced Simulator Return O-Ring Yes or No

B. Calibration Adjustment (Level 3,M,C,O)

Autocalibration Printout Attached

Max Power Res Value ≥ 10

Auto Range Res Value ≥ 4

2. Simulator Solutions for Calibration Adjustment

Soln.	g/210 L	Lot No.	Exp. Date	Simulator SN
1	0.000	NA-Milli-Q H₂O	NA-Milli-Q H ₂ O	MP3003
2	0.040	202410D	10/22/2026	MP 6038
3	0.080	202501A	1/15/2027	MP 3057-
4	0.100	202408F	08/28/2026	MP 5319
5	0.300	2024020	02/4/26	MP6035

3. 0.080 AC Calibration Gas for H₂O Adjustment

Lot No. 1432308 DA 4 Cyl No. 42 Exp. Date: 6/5/25

4. Atmospheric Pressure

Displayed by Intoxilyzer® 8000

Adjusted to using barometer
Auto Calibration Report printout

Barometer Model

Barometer Serial Number

Barometer Calibration Expiration Date

958 mbar
958 mbar
10510-922
250063738

5. A Screen displayed "Calibration Success"

Calibration Adjustment Printout Attached

X Solution 1 Avg % Abs ≤ 0.2500

Solution 2-5 REL STD DEV ≤ 3.000

 \boxtimes Residual (g/210 L) values for solutions 1 - 5 ≤ 0.0020 for 3 μ m and 9 μ m channels

Intoxilyzer 8000 Calibration Adjustment

Document ID: 11859 Revision: 3

Laboratory Unit: Toxicology Unit - Breath Alcohol Section

Status: Published

Approved By: Laboratory Director

Date Approved: 03/20/2025

UNCONTROLLED WHEN PRINTED

Page 1 of 2

Dry Gas H₂O adjustment sum fo 3 μm <u>aqつ3</u> (Ave.) + <u>83</u> 9 μm <u>aч≀</u> (Ave.) + <u>3</u> 9	
C. Is an Annual Inspection due for this instrument If Yes, complete Intoxilyzer 8000 Annual Insp If No, complete Intoxilyzer 8000 Calibration (Inspection)	ection (Document ID: 11698)
Remarks/Notes: <u>N\A</u>	
Breath Alcohol Analyst Signature	 ОЩине 2025 Date
Houll Prischeller Reviewer Signature	Date Date

AEN

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000 SN 80-007086 06/04/2025 10:42:51

Auto Calibration Max Power Res Value = 78 Auto Range Res Value = 57

du Nuverors
of 10 June 2007

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000 SN 80-007086 06/04/2025 10:42:51

Auto Calibration

pg 1 of 2

Upload	ded 10June2025	i	Page	4 of 5		60) (20) (52) (72) OHUVO AEN
			-			Milling
REL STD DEV	0.386	(19.063)		0.123	(12.3	72)
STD DEV	0.0223	(0.0074)		0.0121	(0.00	(52) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Avg % Abs	5.7840	(0.0387)		9.8950	(0.04	20)
Sample #4	5.8090	(0.0330)		9.9060	(0.03	60)
Sample #3	5.7660	(0.0470)		9.8970	(0.04	50\
Sample #2	5.7770	(0.0360)		9.8820	(0.04	
Sample #1	5.8090	(-0.0120)		9.9050	(-0.0	
Sample	% Abs	(% Abs Ref		% Abs		
Solution = 0	.300 g/210I	L or 1.4286	mg/l,	Samples = 4 ,	Discarde	d = 1
Duv			-		(20.)	
REL STD DEV	0.703	(33.757)		0.152	(26.9	*
STD DEV	0.0150	(0.0083)		0.0055	(0.00	
Avg % Abs	2.1363	(0.0247)		3.6233	(0.01	
Sample #4	2.1510	(0.0220)		3.6230	(0.01	
Sample #3	2.1210	(0.0340)		3.6180	(0.01	
	2.1370	(0.0180)		3.6290	(0.00	
Sample #1		(0.0000)		3.6210	(0.00	10)
Sample	% Abs	(% Abs Ref	Ξ)	~ % Abs	(% Abs	Ref)
Solution = 0	.100 g/210I	or 0.4762	mg/l,	Samples = 4 ,	Discarde	d = 1
			_			
REL STD DEV	0.957	(7.550)		0.150	(40.7	
STD DEV		(0.0025)		0.0044	(0.00	46)
Avg % Abs	1.7303	(0.0333)		2.9140	(0.01	
	1.7460	(0.0330)		2.9160	(0.01	40)
		(0.0310)		2.9090	(0.01	
Sample #2	1.7130	(0.0360)		2.9170	(0.00	
Sample #1		(0.0000)		2.9200	(-0.0	· ·
Sample			-)	% Abs		
				Samples = 4 ,		
0-1	000 -/030	0 2012	- /7		ndanı 1	
REL STD DEV	1.997	(64.957)		0.475	(100.	000)
		· · · · · · · · · · · · · · · · · · ·		0.0074	(0.00	
STD DEV		(0.0237)		1.5503		-
		(0.0340)			(0.00	
Sample #4	0.9630	(0.0310)		1.5530	(0.00	
		(0.0310)		1.5420	(0.00	
-		(0.0060)		1.5560	(0.00	
Sample #1		(-0.0230)		1.5680	(-0.0	
Sample		(% Abs Ref			(% Abs	
Solution = 0	.040 g/210I	or 0.1905	mg/l,	Samples = 4,	Discarde	d = 1
			=			
REL STD DEV		(21.519)		7.362	(47.0	27)
STD DEV	0.0171	(0.0181)		0.1747 0.0129 7.362	(0.00	86)
Avg % Abs	0.1943	(0.0843)		0.1747	(0.01	83)
Sample #4	0.2140	(0.1010)		0.1840	(0.02	00)
Sample #3		(0.0870)		0.1600	(0.02	
Sample #2	0.1860	(0.0650)		0.1800	(0.00	90)
Sample #1	0.2190	(0.0040)		0.2010	(-0.0	040)
Sample	% Abs	(% Abs Ref	:)	% Abs	(% Abs	Ref)
				Samples = 4 ,		
			•			
	<<<<	3um >>>	·>>	<<<<	9um	>>>>

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000 SN 80-007086 06/04/2025 10:42:51

Auto Calibration

pg 2 of 2

<<<<	3um	>>>>	<<<<	9um	>>>>
oef 240	5.79		133	36.31	
(g/210 0.000 0.040 0.079 0.101	L) (g/2 -0. 0.0 0.0 -0.	10L) 0002 003 006 0007	(g/210L) 0.000 0.040 0.080 0.100	(g/21 0.00 0.04 0.07 0.10	0L) (g/210L) 0 -0.0003 0 0.0004 9 0.0005 1 -0.0007
<<<<	3um	>>>>	<<<<	9um	>>>>
	3015. 2997. 2899. 3024. 2973. 65.77	00 00 00 00 3333 49	Samples = 4,	342 342 339 342 341 20.	8.00 7.00 0.00 5.00 4.0000 8087
	ef -45 oef 240 Coef 24 Fit (g/210 0.000 0.040 0.079 0.101 0.300	ef -457.35 oef 2405.79 Coef 24.70 Fit Resi (g/210L) (g/2 0.000 -0. 0.040 0.0 0.079 0.0 0.101 -0. 0.300 0.0	Def 2405.79 Coef 24.70 Fit Residual (g/210L) (g/210L) 0.000 -0.0002 0.040 0.0003 0.079 0.0006 0.101 -0.0007 0.300 0.0000	ef -457.35	ef -457.35

Atmospheric Pressure = 958

Mymorors