

NORTH DAKOTA OFFICE OF ATTORNEY GENERAL CRIME LABORATORY DIVISION

INTOXILYZER® 8000 CALIBRATION ADJUSTMENT

Intoxilyzer® 8000 Serial Number: 80-005953 Calibration Adjustment Location: TOXL

A. Pre-Adjustment

Replaced Simulator Return O-Ring Yes or No

B. Calibration Adjustment (Level 3,M,C,O)

Autocalibration Printout Attached

Max Power Res Value ≥ 10

Auto Range Res Value ≥ 4

2. Simulator Solutions for Calibration Adjustment

Soln.	g/210 L	Lot No.	Exp. Date	Simulator SN	
1	0.000	NA-Milli-Q H ₂ O	NA-Milli-Q H₂O	MP5321	
2	0.040	202303H	28 Mar25	MP5289	
3	0.080	202302B	14Feb25	MP3067	
4	0.100	202304A	04 Apras	MP6038	
5	0.300	202402 C	14 Feb 26	MP3662	

0.080 AC Calibration Gas for H₂O Adjustment

Lot No. 01923080A3 Cyl No. # Exp. Date: 2/5/25

4. Atmospheric Pressure

Displayed by Intoxilyzer® 8000

Adjusted to using barometer
Auto Calibration Report printout

Barometer Model

Barometer Serial Number

Barometer Calibration Expiration Date

Displayed by Intoxilyzer® 8000

953 mbar

5. Screen displayed "Calibration Success"

6. ACalibration Adjustment Printout Attached

 \square Solution 1 Avg % Abs \leq 0.2500

Solution 2-5 REL STD DEV ≤ 3.000

Residual (g/210 L) values for solutions 1 - 5 \leq 0.0020 for 3 μ m and 9 μ m channels

Intoxilyzer 8000 Calibration Adjustment

Laboratory Unit: Toxicology Unit - Breath Alcohol Section

Approved By: Laboratory Director

UNCONTROLLED WHEN PRINTED

Document ID: 11859 Revision: 2

Date Approved: 02/29/2024

Page 1 of 2

Status: Published

AEN

\square Dry Gas H ₂ O adjustment sum for 3 μm and 9 μm channels within ± 10 3 μm 3525 (Ave.) + 284 (H ₂ O Adj.) = 3809 9 μm 3460 (Ave.) + 349 (H ₂ O Adj.) = 3809	
C. Is an Annual Inspection due for this instrument? Yes or No If Yes, complete Intoxilyzer 8000 Annual Inspection (Document ID: 11698) If No, complete Intoxilyzer 8000 Calibration (Document ID: 11871).	
Remarks/Notes: All	
Analyst Signature Date	

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000 SN 80-005953 04/10/2024 13:28:48

Auto Calibration

pg 1 of

	<<<<	3um >>>>	<<<<	9um >>>>
Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV	% Abs	or 0.0000 mg/l, (% Abs Ref) (-0.0160) (0.0660) (0.0910) (0.1400) (0.0990) (0.0376) (38.023)	Samples = 4, % Abs 0.1850 0.1420 0.1700 0.1430 0.1517 0.0159 10.474	Discarded = 1 (% Abs Ref) (0.0000) (0.0280) (0.0230) (0.0470) (0.0327) (0.0127) (38.762)
Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV	% Abs	or 0.1905 mg/l, (% Abs Ref) (0.0140) (0.0180) (0.0180) (0.0100) (0.0153) (0.0046) (30.123)	Samples = 4, % Abs 1.5250 1.5430 1.5560 1.5770 1.5587 0.0172 1.101	
Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV		or 0.3810 mg/l, (% Abs Ref) (-0.0100) (-0.0080) (-0.0160) (-0.0020) (-0.0087) (0.0070) (81.043)	Samples = 4, % Abs 2.9120 2.9240 2.9250 2.9040 2.9177 0.0118 0.406	
Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV	% Abs 1.7560 1.8290 1.8270 1.8570 1.8377 0.0168 0.913	or 0.4762 mg/l, (% Abs Ref) (0.0140) (0.0040) (-0.0020) (-0.0090) (-0.0023) (0.0065) (278.846)	% Abs 3.5880 3.6180 3.6150 3.6210 3.6180 0.0030 0.083	(% Abs Ref) (-0.0130) (0.0100) (0.0200) (0.0010) (0.0103)
Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV	.300 g/210L % Abs 5.1540 5.1950 5.2110 5.2050 5.2037 0.0081 0.155	or 1.4286 mg/l	Samples = 4, % Abs 9.9020 9.9340 9.9250 9.9140 9.9243 0.0100 0.101	Discarded = 1 (% Abs Ref) (-0.0070) (0.0070) (0.0010) (0.0200)

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000 SN 80-005953 04/10/2024 13:28:48

Auto Calibration

pg 2 of 2

<<	<<< 3u	.m >>>>	<<<<	9um	>>>>
Zero Order Coef First Order Coe Second Order Co	ef 2637.0		-19 132 13.2		
(g/210L) 0.000 0.040 0.080 0.100	(g/210L) 0.000 0.040 0.079 0.100	Residual (g/210L) -0.0001 -0.0000 0.0005 -0.0004 0.0000	(g/210L) 0.000 0.040 0.080 0.100	0.000 0.040 0.080 0.100	(g/210L) -0.0001 0.0000
< <	<<< 3u	ım >>>>	<<<<	9um	>>>>
Solution = 0.08 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg STD DEV REL STD DEV H20 adjust (mg)	3556.00 3512.00 3540.00 3524.00 3525.3333 14.0475	Samples = 4,	3521. 3476. 3446. 3458. 3460. 15.09 0.436	00 00 00 00 000 97	

Atmospheric Pressure = 952