

## NORTH DAKOTA OFFICE OF ATTORNEY GENERAL CRIME LABORATORY DIVISION

## INTOXILYZER® 8000 CALIBRATION ADJUSTMENT

Intoxilyzer® 8000 Serial Number: 80-00 5956 Calibration Adjustment Location: TOXL

A. Pre-Adjustment

Replaced Simulator Return O-Ring Yes or No

- B. Calibration Adjustment (Level 3,M,C,O)
  - 1. X Autocalibration Printout Attached

Max Power Res Value ≥ 10

Auto Range Res Value ≥ 4

2. Simulator Solutions for Calibration Adjustment

| Soln. | g/210 L Lot No. |                             | Exp. Date      | Simulator SN |  |
|-------|-----------------|-----------------------------|----------------|--------------|--|
| 1     | 0.000           | NA-Milli-Q H <sub>2</sub> O | NA-Milli-Q H₂O | MP5321       |  |
| 2     | 0.040           | 202303H                     | 28 maras       | MP5289       |  |
| 3     | 0.080           | 202302B                     | HFebas         | MP3067       |  |
| 4     | 0.100           | 202304A                     | 04 Apras       | MP6038       |  |
| 5     | 0.300           | 202402C                     | 14 Peb 26      | MP3062       |  |

3. 0.080 AC Calibration Gas for H<sub>2</sub>O Adjustment

Lot No. 14323080 Ay Cyl No. 13 Exp. Date: 6/5/25

4. Atmospheric Pressure

Displayed by Intoxilyzer® 8000

Adjusted to using barometer
Auto Calibration Report printout

Barometer Model

Barometer Serial Number

Barometer Calibration Expiration Date

958 mbar
957 mbar
10510-922
230307350

5. Screen displayed "Calibration Success"

6. 🖾 Calibration Adjustment Printout Attached

Solution 1 Avg % Abs ≤ 0.2500

Solution 2-5 REL STD DEV ≤ 3.000

 $\boxtimes$  Residual (g/210 L) values for solutions 1 - 5  $\leq$  0.0020 for 3  $\mu$ m and 9  $\mu$ m channels

Intoxilyzer 8000 Calibration Adjustment

Laboratory Unit: Toxicology Unit - Breath Alcohol Section

Approved By: Laboratory Director UNCONTROLLED WHEN PRINTED

Document ID: 11859 Revision: 2

Status: Published

Date Approved: 02/29/2024

Page 1 of 2

AEN

| □ Dry Gas H₂O adjustment sum for 3 μm and 9 μm channels within ± 10 |
|---------------------------------------------------------------------|
| 3 μm $3342$ (Ave.) + $447$ (H <sub>2</sub> O Adj.) = $3809$         |
| 9 $\mu$ m 33   9 (Ave.) + $\mu$ 9 (H <sub>2</sub> O Adj.) = 3809    |

| C. I | Is an Annual Inspection due for this instrument? Yesor No                |
|------|--------------------------------------------------------------------------|
|      | If Yes, complete Intoxilyzer 8000 Annual Inspection (Document ID: 11698) |
| 1    | If No, complete Intoxilyzer 8000 Calibration (Document ID: 11871).       |

| Remarks/Notes: N/A |                      |             |
|--------------------|----------------------|-------------|
|                    |                      |             |
|                    |                      | <del></del> |
| Analyst Signature  | 04Apr2024<br>Date    |             |
| Reviewer Signature | OS Aporas 24<br>Date |             |

Uploaded 09April2024

Page 2 of 5

TUXL Intoxilyzer - Alcohoi Analyzer Model 8000 SN 80-005956 04/04/2024 !1:26:40

Auto Calibration Max Power Res Value = 24 Auto Range Res Value = 8

SN 80-005956

04/04/2024

11:26:40

## Auto Calibration

pg 1 of 2

|                                                                                           | <<<<                                                                                      | 3um >>                                                                                                     | ·>>>        | <<<<                                                                                       | 9um                                                                               | >>>>                                            |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|
| Sample<br>Sample #1                                                                       | % Abs<br>0.1070<br>0.1110<br>0.1010                                                       | or 0.0000<br>(% Abs Re<br>(-0.0190<br>(0.0170)<br>(0.0510)<br>(0.0980)<br>(0.0553)<br>(0.0407)<br>(73.506) | ef)<br>))   | Samples = 4,<br>% Abs<br>0.1720<br>0.1830<br>0.2090<br>0.1870<br>0.1930<br>0.0140<br>7.254 | (% Abs<br>(-0.0<br>(-0.0<br>(-0.0<br>(0.01<br>(0.00                               | Ref)<br>310)<br>100)<br>050)<br>70)             |
| Sample #1 Sample #2 Sample #3                                                             | % Abs                                                                                     | or 0.1905<br>(% Abs Re<br>(-0.0030<br>(0.0180)<br>(0.0470)<br>(0.0530)<br>(0.0393)<br>(0.0187)<br>(47.586) | ef)<br>))   | Samples = 4,<br>% Abs<br>1.4980<br>1.5540<br>1.5730<br>1.5560<br>1.5610<br>0.0104<br>0.669 | (% Abs<br>(-0.0<br>(-0.0<br>(-0.0                                                 | Ref)<br>030)<br>070)<br>150)<br>20)<br>067)     |
| Sample<br>Sample #1                                                                       | % Abs                                                                                     | or 0.3810<br>(% Abs Re<br>(0.0150)<br>(0.0410)<br>(0.0440)<br>(0.0640)<br>(0.0483)<br>(0.0136)<br>(28.090) | ef)         | Samples = 4,<br>% Abs<br>2.8060<br>2.9140<br>2.9640<br>2.9380<br>2.9387<br>0.0250<br>0.851 | Discarde<br>(% Abs<br>(0.01<br>(-0.0<br>(0.01<br>(0.02<br>(0.01<br>(0.01<br>(107. | Ref)<br>20)<br>010)<br>20)<br>40)<br>17)<br>25) |
| Sample                                                                                    | % Abs<br>1.7360<br>1.7870<br>1.7650<br>1.7490<br>1.7670<br>0.0191<br>1.080                | or 0.4762<br>(% Abs Re<br>(0.0130)<br>(0.0370)<br>(0.0650)<br>(0.0720)<br>(0.0580)<br>(0.0185)<br>(31.931) | ef)         | Samples = 4,<br>% Abs<br>3.5020<br>3.6160<br>3.6320<br>3.6100<br>3.6193<br>0.0114<br>0.314 | (% Abs<br>(0.01<br>(0.01<br>(0.02                                                 | Ref)<br>00)<br>60)<br>30)<br>20)<br>37)<br>80)  |
| Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | .300 g/210L<br>% Abs<br>4.8270<br>4.9540<br>5.0210<br>5.0130<br>4.9960<br>0.0366<br>0.732 | or 1.4286<br>(% Abs Re<br>(0.0000)<br>(0.0310)<br>(0.0150)<br>(0.0230)<br>(0.0230)<br>(0.0080)<br>(34.783) | mg/l,<br>f) | Samples = 4,<br>% Abs<br>9.6300<br>9.8580<br>9.8990<br>9.9010<br>9.8860<br>0.0243<br>0.245 | Discarde<br>(% Abs<br>(0.00<br>(0.04<br>(0.05<br>(0.04<br>(0.04<br>(9.66          | Ref)<br>40)<br>20)<br>10)<br>70)<br>67)<br>45)  |

TOXL

Intoxilyzer - Alcohol Analyzer

Model 8000

SN 80-005956

04/04/2024

11:26:40

## Auto Calibration

pg 2 of 2

|                                                                                                   | <<<<                                          | 3um >>>>                                                                  | <<<<                                | 9um                              | >>>>                                                  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------------|
| Zero Order Co<br>First Order of<br>Second Order                                                   | Coef 2785                                     | .74                                                                       |                                     | 45.59<br>40.68<br>05             |                                                       |
| 0.000<br>0.040<br>0.080<br>0.100                                                                  | ) (g/210L<br>0.001<br>0.039<br>0.081<br>0.100 | Residual ) (g/210L) -0.0005 0.0011 -0.0005 -0.0001                        | (g/210L)<br>0.000<br>0.040<br>0.080 | 0.000<br>0.039<br>0.080<br>0.100 | L) (g/210L)<br>-0.0003<br>0.0005<br>0.0001<br>-0.0003 |
|                                                                                                   | <<<<                                          | 3um >>>>                                                                  | <<<<                                | 9um                              | >>>>                                                  |
| Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg STD DEV REL STD DEV H2O adjust (n |                                               | 3349.00<br>3320.00<br>3375.00<br>3333.00<br>3342.6667<br>28.7460<br>0.860 | l, Samples = 4,                     | 3304<br>3302<br>3312<br>3345     | .00<br>.00<br>.00<br>.00<br>.6667                     |

Atmospheric Pressure = 957