NORTH DAKOTA OFFICE OF ATTORNEY GENERAL CRIME LABORATORY DIVISION ## INTOXILYZER® 8000 CALIBRATION ADJUSTMENT Intoxilyzer® 8000 Serial Number: 80-00 5358 Calibration Adjustment Location: TOXL A. Pre-Adjustment Replaced Simulator Return O-Ring - B. Calibration Adjustment (Level 3, M, C, O) - Autocalibration Printout Attached - Max Power Res Value ≥ 10 - Auto Range Res Value ≥ 4 - 2. Simulator Solutions for Calibration Adjustment | Soln. | g/210 L | Lot No. | Exp. Date | Simulator SN | |-------|---------|-----------------------------|----------------|--------------| | 1 | 0.000 | NA-Milli-Q H ₂ O | NA-Milli-Q H₂O | MP3066 | | 2 | 0.040 | doaIIIA | 09Nova3 | MP 6040 | | 3 | 0.080 | ada 110 C | 260ct 23 | MP5320 | | 4 | 0.100 | 202304A | 04 Apras | MP5290 | | 5 | 0.300 | 2022017 | 18 Jan 24 | MP3059 | 3. 0.080 AC Calibration Gas for H₂O Adjustment Lot No. 24021080Al Cyl No. 20 Exp. Date: 10 | 5 | 23 4. Atmospheric Pressure Displayed by Intoxilyzer® 8000 Adjusted to using barometer Auto Calibration Report printout Barometer Model Barometer Serial Number Barometer Calibration Expiration Date Screen displayed "Calibration Success" 6. Z Calibration Adjustment Printout Attached Solution 1 Avg % Abs ≤ 0.2500 Solution 2-5 REL STD DEV ≤ 3.000 Intoxilyzer 8000 Calibration Adjustment Laboratory Unit: Toxicology Unit - Breath Alcohol Section Approved By: Laboratory Director UNCONTROLLED WHEN PRINTED Qualtrax ID: 11859 Revision: 1 mbar **900** mbar 900 mbar 03314-72 Status: Published Date Approved: 06/20/2023 Page 1 of 2 | ☒ Residual (g/210 L) values
μm channels | for solutions 1 - 5 \leq 0.0020 for 3 μ m and 9 | | | | | | |---|--|--|--|--|--|--| | Dry Gas H ₂ O adjustment 3 μm <u>3523.0</u> (Ave.) | sum for 3 µm and 9 µm channels within ± 10 + 280 (H ₂ O Adj.) = 3809 + 373 (H ₂ O Adj.) = 3809.3 | | | | | | | C. Is an Annual Inspection due for this instrument? Yes or No If Yes, complete Intoxilyzer 8000 Annual Inspection (Qualtrax ID: 11698) If No, complete Intoxilyzer 8000 Calibration (Qualtrax ID: 11871). | | | | | | | | Remarks/Notes: NIA | | | | | | | | | | | | | | | | Analyst Signature | 22June 2023
Date | | | | | | | Reviewer Signature | Date | | | | | | Approved By: Laboratory Director UNCONTROLLED WHEN PRINTED Date Approved: 06/20/2023 Page 2 of 2 Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-005358 06/22/2023 09:21:25 Auto Calibration Max Power Res Value = 26 Auto Range Res Value = 15 Auto Calibration printout Intoxilyzer - Alcohol Analyzer Model 8000 SN Model 8000 SN 80-005358 06/22/2023 09:21:25 Auto Calibration pg 1 of 2 | | <<<< | 3um >>>> | <<<< | 9um >>>> | |---|--|---|---|---| | Solution = Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | % Abs
0.0770
0.0080
0.0620
0.0190
0.0297
0.0285 | or 0.0000 mg/l
(% Abs Ref)
(-0.0300)
(0.0280)
(0.0320)
(0.0590)
(0.0397)
(0.0169)
(42.510) | Samples = 4,
% Abs
0.1420
0.1310
0.1610
0.1240
0.1387
0.0197
14.175 | Discarded = 1 (% Abs Ref) (-0.0100) (0.0220) (0.0220) (0.0210) (0.0217) (0.0006) (2.665) | | Solution = Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | % Abs
0.7270
0.7150
0.7310
0.7000
0.7153
0.0155 | or 0.1905 mg/l
(% Abs Ref)
(0.0090)
(0.0240)
(0.0240)
(0.0410)
(0.0297)
(0.0098)
(33.084) | Samples = 4,
% Abs
1.4200
1.4010
1.4130
1.4390
1.4177
0.0194
1.370 | Discarded = 1 (% Abs Ref) (0.0220) (0.0520) (0.0450) (0.0290) (0.0420) (0.0118) (28.071) | | Solution = Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | % Abs
1.4340
1.4200
1.4340
1.4400
1.4313 | or 0.3810 mg/l,
(% Abs Ref)
(-0.0030)
(-0.0040)
(0.0070)
(0.0070)
(0.0033)
(0.0064)
(190.526) | Samples = 4,
% Abs
2.7230
2.7090
2.7310
2.7120
2.7173
0.0119
0.439 | Discarded = 1 (% Abs Ref) (0.0030) (0.0010) (0.0130) (0.0080) (0.0062) (78.062) | | Solution = Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | 0.100 g/210L
% Abs
1.7880
1.7840
1.7770
1.7890
1.7833
0.0060
0.338 | or 0.4762 mg/l,
(% Abs Ref)
(-0.0100)
(0.0020)
(0.0010)
(0.0020)
(0.0017)
(0.0006)
(34.641) | Samples = 4,
% Abs
3.3950
3.3710
3.3730
3.3870
3.3770
0.0087
0.258 | Discarded = 1 (% Abs Ref) (-0.0160) (0.0100) (0.0130) (0.0120) (0.0117) (0.0015) (13.093) | | Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV | 0.300 g/210L
% Abs
5.0370
4.9660
5.0180
4.9820
4.9887
0.0266
0.534 | or 1.4286 mg/l,
(% Abs Ref)
(-0.0230)
(0.0320)
(0.0170)
(0.0400)
(0.0297)
(0.0117)
(39.358) | Samples = 4,
% Abs
9.3160
9.2630
9.2470
9.2070
9.2390
0.0288
0.312 | Discarded = 1 (% Abs Ref) (-0.0220) (0.0400) (0.0620) (0.0760) (0.0593) (0.0181) (30.586) | ``` TOXL ``` Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-005358 06/22/2023 09:21:25 Auto Calibration pg 2 of 2 | | <<<< | 3um >>>> | <<<< | 9um | >>>> | | |---|---|--|--|---|---|--| | Zero Order Coef -50.61
First Order Coef 2625.41
Second Order Coef 49.68 | | .41 | -175.14
1417.86
15.92 | | | | | (g/210L)
0.000
0.040
0.080
0.100 | (g/210L
0.001
0.039
0.080
0.101 | Residual) (g/210L) -0.0006 0.0011 0.0000 -0.0006 0.0001 | (g/210L)
0.000
0.040
0.080
0.100 | (g/2100
0.000
0.039
0.080
0.101 | L) (g/210L)
-0.0005
0.0008
0.0003
-0.0007 | | | | <<<< | 3um >>>> | <<<< | 9um | >>>> | | | Solution = 0 Sample Sample #1 Sample #2 Sample #3 Sample #4 Avg STD DEV REL STD DEV H20 adjust (r | | | , Samples = 4, | 3405
3411
3460
3438 | .00
.00
.00
.00
.3333 | | Atmospheric Pressure = 960 Mel