Toxicology Section/Breath Alcohol Program Intoxilyzer® 8000 Calibration Adjustment

BrW-008

INTOXILYZER[®] 8000 CALIBRATION ADJUSTMENT

Intoxilvz	zer [®] 8000	Serial Num	ber: <u>80-007</u>	Locatio	n: <u>TOXL</u>		
Intoxilyzer® 8000 Serial Number: $80-007093$ Location: $TOXL$ NACER $ 2/16/19 $ A.Flow Sensor Calibration and Verification Check (Level 3,M,C,F)NoFlow Senser1.Replaced o-rings if damaged2.Flow Meter Serial Number:CALIBRATION.3.3.Air Supplied to Intoxilyzer® 8000 at:a.5 L/minTow metrorsa.Image: Flow Rate Calibration Printout AttachedImage: Flow Rate Calibration Verification (Level 3,D,F)a.10 L/min: 0.CHECK5.CHECK5.CHECK5.CHECK5.CHECK5.Blow Rates within + 1 L/min of Expected Value							
ł	 c. □ Flow Rates within ± 1 L/min of Expected Value B. Gas Tank Sensor Check (Level 3,D,G) Display: 755 psi Regulator: 750 psi Display and Regulator within 50 psi Completed tare of tank sensor if needed (Level 3,M,C,G) C. Optical Bench Calibration and Verification Check (Level 3,M,C,G) Autocalibration Printout Attached Max Power Res Value ≥ 10 Auto Range Res Value ≥ 4 Simulator Solutions for Optical Bench Calibration Adjustment 						
a. XSet # Solutions to Run at 5 Soln. g/210 L Lot No. Exp. Date Simulator							
1 0.000 ACTUAL		NA – MilliQ H ₂ O	NA – MilliQ H ₂ O	MP 5289			
2	0.040)	0.040	201BOBD	8.22.20	MP5319		
3	0.080)	0.081	201807C	7.25.20	MP5290		
4	0.150)	0.151	201811E	11.26.20	mP5320		
5		0 201	2018034	2 22 24	MP5321		

- 0.100 AC Calibration Gas for H2O Adjustment 3.
 - Lot No. 135/8100A3 Cyl No. 6 Exp. Date: 8.5.20 a.

3.22.20

Atmospheric Pressure 4

C.

0.301 201803H

- 957 mbar Displayed by Intoxilyzer[®] 8000 a.
- 958 mbar Adjusted to using barometer b.
 - 58 mbar on Auto Calibration Report printout
- Screen displayed "Calibration Success" 5.

0.300

5

OFFICE OF ATTORNEY GENERAL CRIME LABORATORY DIVISION

7.

Toxicology Section/Breath Alcohol Program Intoxilyzer® 8000 Calibration Adjustment

BrW-008

- 6. X Calibration Adjustment Printout Attached
 - a. X Solution 1 Avg % Abs \leq 0.2500
 - b. Solution 2-5 REL STD DEV \leq 3.000
 - c. Residual (g/210 L) Values for Solutions $1-5 \le 0.0020$ for 3 μ m and 9 μ m channels
 - d. XDry Gas H2O Adjustment Sum for 3 μm and 9 μm channels within ± 10

H₂O Adjust

Average

- $3 \mu m 4392 + 369 = 4761$ $9 \mu m 4140 + 621 = 4761$
- Optical Bench Calibration Verification (Level 1, S and C)
- a. Wet Calibration Check
 - i. Low AC Known Value ≤ 0.03 AC: <u>0-020</u> AC Sim. SN: <u>DR3378</u> Lot No.: <u>/8000</u> Exp. Date: <u>1.9.20</u>
 - ii. High AC Known Value ≥ 0.25 AC: <u>0,250</u> AC Sim. SN: <u>DR7351</u> Lot No.: <u>2018036</u> Exp. Date: <u>3,22,20</u>
- b. Dry Calibration Check: Known Value 0.08 AC Lot No. <u>349/7080A3</u> Cyl No. <u>2</u> Exp. Date: <u>2/5/20</u> Test 1 <u>0.080</u> AC Test 4 <u>0.080</u> AC Test 7 <u>0.080</u> AC Test 2 <u>0.079</u> AC Test 5 <u>0.079</u> AC Test 8 <u>0.080</u> AC Test 3 <u>0.080</u> AC Test 6 <u>0.079</u> AC Test 9 <u>0.080</u> AC Average <u>0.090</u> AC
- c. Wet Calibration Check and Dry Calibration Check AC results are within ± 0.005 or ± 5% (whichever is greater) of stated value.

D. Remarks/Maintenance: CALIBRATION ADJUSTMENT DUE TO
Some 0.08,4AC RETURNS FOR THE 0.080AC STANDARD.
0.084 AC VALLE STILL WITH TOLERANCE.
REPLACED GAS REGULATOR, WIRES FRATES RUBBED AGAINST CASE.
ExposeD.

VInstrument is acceptable to be used in the field.

Breath Analyst Signature

12/16/2019 NIA Date

Date

TOXL Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-007093 12/16/2019 15:37:01

Auto Calibration

pg 1 of 2

	<<<<<	3um >>>>	<<<<<	9um >>>>
Solution = 0	.000 g/210L	or 0.0000 mg/l,	<pre>Samples = 4,</pre>	Discarded = 1
Sample	% Abs	(% Abs Ref)	% Abs	(% Abs Ref)
Sample #1	0.0630	(-0.0080)	0.2370	(-0.0120)
Sample #2	0.0670	(0.0280)	0.2270	(-0.0020)
Sample #3	0.0210	(0.0680)	0.2060	(0.0120)
Sample #4	0.0590	(0.0760)	0.2370	(0.0110)
Avg % Abs	0.0490	(0.0573)	0.2233	(0.0070)
STD DEV	0.0246	(0.0257)	0.0158	(0.0078)
REL STD DEV	50.156	(44.854)	7.084	(111.575)
Solution = 0	.040 g/210L	or 0.1905 mg/l,	<pre>Samples = 4,</pre>	Discarded = 1
Sample	% Abs	(% Abs Ref)	% Abs	(% Abs Ref)
Sample #1	0.7780	(-0.0150)	1.6250	(-0.0220)
Sample #2	0.7680	(0.0060)	1.6000	(0.0000)
Sample #3	0.7900	(0.0160)	1.5990	(0.0200)
Sample #4	0.7460	(0.0460)	1.5630	(0.0200)
Avg % Abs	0.7680	(0.0227)	1.5873	(0.0097)
STD DEV	0.0220	(0.0208)	0.0211	(0.0100)
REL STD DEV	2.865	(91.838)	1.328	(103.621)
Solution = 0	.081 g/210L	or 0.3857 mg/l,	<pre>Samples = 4,</pre>	Discarded = 1
Sample	% Abs	(% Abs Ref)	% Abs	(% Abs Ref)
Sample #1	1.5070	(-0.0290)	2.9610	(-0.0250)
Sample #2	1.5300	(-0.0120)	2.9540	(0.0140)
Sample #3	1.4830	(0.0110)	2.9170	(0.0210)
Sample #4	1.5090	(0.0010)	2.9400	(0.0210)
Avg % Abs	1.5073	(0.0000)	2.9370	(0.0187)
STD DEV	0.0235	(0.0115)	0.0187	(0.0040)
REL STD DEV	1.562	(0.000)	0.636	(21.651)
Solution = 0 Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV	.151 g/210L % Abs 2.6890 2.6560 2.6850 2.6850 2.6753 0.0167 0.626	or 0.7190 mg/l, (% Abs Ref) (-0.0050) (0.0280) (0.0310) (0.0310) (0.0300) (0.0017) (5.773)	Samples = 4, % Abs 5.1660 5.1240 5.1380 5.1430 5.1350 0.0098 0.192	Discarded = 1 (% Abs Ref) (0.0070) (0.0410) (0.0420) (0.0300) (0.0377) (0.0067) (17.677)
Solution = 0 Sample #1 Sample #2 Sample #3 Sample #4 Avg % Abs STD DEV REL STD DEV	<pre>% Abs 5.1790 5.1930 5.1640 5.1590 5.1720 0.0184</pre>	or 1.4333 mg/l, (% Abs Ref) (0.0000) (0.0150) (0.0280) (0.0300) (0.0243) (0.0081) (33.471)	Samples = 4, % Abs 9.6520 9.6490 9.6420 9.6280 9.6397 0.0107 0.111	Discarded = 1 (% Abs Ref) (0.0000) (0.0280) (0.0300) (0.0440) (0.0340) (0.0087) (25.641)

TOXL Intoxilyzer - Alcohol Analyzer Model 8000 SN 80-007093 12/16/2019 15:37:01

Auto Calibration

<<	<<< 3u	IM >>>>>	<<<<<	9um >	>>>>
Zero Order Coef First Order Coe Second Order Co	ef 2646.1	10 7 .		23.56 39.33 54	
Act (g/210L) 0.000 0.040 0.081 0.151 0.301	Fit (g/210L) -0.000 0.040 0.082 0.150 0.301	Residual (g/210L) 0.0003 0.0000 -0.0011 0.0009 -0.0001	Act (g/210L) 0.000 0.040 0.081 0.151 0.301	Fit (g/210L) -0.000 0.040 0.081 0.151 0.301	Residual (g/210L) 0.0003 -0.0002 -0.0004 0.0004 -0.0001

	<<<<<	3um	>>>>>	<<<<<	9um >>>>
Sample	100 g/210L	or 0.	.4762 mg/l,	Samples = 4,	Discarded = 1
Sample #1 Sample #2			36.00 51.00		4221.00
Sample #3			28.00		4147.00 4159.00
Sample #4		100000	97.00		4116.00
Avg STD DEV REL STD DEV H2O adjust (m	a/l*10k)				4140.6665 22.1886 0.536 621

Atmospheric Pressure = 958

TOXL Intoxilyzer - Alconol Analyzer Model 8000 SN 80-007093 12/16/2019 15:37:01

Auto Calibration Max Power Res Value = 95 Auto Pomoe Res Value = 77

Chala El

pg 2 of 2

Intoxilyzer Test Record and Checklist NDOAG Crime Lab. Div., Bismarck, ND 58501

CMI, Inc. IntoxilyzerAlcohol AnalyzerNorth Dakota Model 8000SN 80-007093Location = TOXL8164.16.00 09/1812/16/201916:21

			WET CAL CHECK	
Te	est		AC	Time
01	Room	Air	0.000	16:21
02	Std.	Sol.	0.020	16:22
03	Room	Air	0.000	16:23
04	Std.	Sol.	0.020	16:23
05	Room	Air	0.000	16:24
06	Std.	Sol.	0.020	16:25
07	Room	Air	0.000	16:25

08 Sim Temp = 34.0°C

Operator Signature CHARLES EDER

Remarks:

LOW AC 0.020 AC

Form 106-18000

Intoxilyzer Test Record and Checklist NDOAG Crime Lab. Div., Bismarck, ND 58501

CMI, Inc. IntoxilyzerAlcohol AnalyzerNorth Dakota Model 8000SN 80-007093Location = TOXL8164.16.00 09/1812/16/201916:26

			WET CAL CHECK	
Te	est		AC	Time
01	Room	Air	0.000	16:26
02	Std.	Sol.	0.246	16:27
03	Room	Air	0.000	16:28
04	Std.	Sol.	0.247	16:28
05	Room	Air	0.000	16:29
06	Std.	Sol.	0.248	16:30
07	Room	Air	0.000	16:30

08 Sim Temp = 34.0°C

Simul Ser No = DR7351 Std Sol No = 201803G County = 08

Oper No. = 666666

6

Operator Signature CHARLES EDER

Remarks:

Form 106-18000

.25

Intoxilyzer Test Record and Checklist NDOAG Crime Lab. Div., Bismarck, ND 58501

CMI, Inc. Intoxilyzer Alcohol Analyzer North Dakota Model 8000 SN 80-007093 8164.16.00 09/18 Location = TOXL 12/16/2019 16:31

			DRY CAL CHECK	
Te	est		AC	Time
01	Room	Air	0.000	16:31
02	Std.	Gas	0.080	16:32
03	Room	Air	0.000	16:32
04	Std.	Gas	0.079	16:33
05	Room	Air	0.000	16:33
06	Std.	Gas	0.080	16:34
07	Room	Air	0.000	16:34

Lot No = 34917080A3Cyl No = 2Exp Date = 02/05/2020County = 08Oper No. = 666666

Operator Signature CHARLES EDER CALIBRATION CHEEK

Remarks:

0.080AC

Form 106-18000

Intoxilyzer Test Record and Checklist NDOAG Crime Lab. Div., Bismarck, ND 58501

CMI, Inc. IntoxilyzerAlcohol AnalyzerNorth Dakota Model 8000SN 80-007093Location = TOXL8164.16.00 09/1812/16/201916:34

			DRY CAL CHECK	
Te	est		AC	Time
01	Room	Air	0.000	16:35
02	Std.	Gas	0.080	16:35
03	Room	Air	0.000	16:36
04	Std.	Gas	0.079	16:36
05	Room	Air	0.000	16:37
06	Std.	Gas	0.079	16:37
07	Room	Air	0.000	16:38

Lot No = 34917080A3 Cyl No = 2 Exp Date = 02/05/2020 County = 08 Oper No. = 666666

Operator Signature CHARLES EDER CALIBRAMON CHECK

Remarks:

0.08040

Form 106-18000

Intoxilyzer Test Record and Checklist NDOAG Crime Lab. Div., Bismarck, ND 58501

CMI, Inc. Intoxilyzer Alcohol Analyzer North Dakota Model 8000 SN 80-007093 Location = TOXL 8164.16.00 09/18 12/16/2019 16:38

			DRY CAL CHECK	
Τe	est		AC	Time
01	Room	Air	0.000	16:38
02	Std.	Gas	0.080	16:39
03	Room	Air	0.000	16:39
04	Std.	Gas	0.080	16:40
05	Room	Air	0.000	16:40
06	Std.	Gas	0.080	16:40
07	Room	Air	0.000	16:41

Lot No = 34917080A3Cyl No = 2Exp Date = 02/05/2020County = 08

Oper No. = 666666

Operator Signature LIBRATION CHECK CHARLES EDER

Remarks:

0.080AC

Form 106-18000